Part I: VIRTUAL LABORATORY versus TRADITIONAL LABORATORY: WHICH IS MORE EFFECTIVE FOR TEACHING ELECTROCHEMISTRY? Part II: THE GREEN SYNTHESIS OF AURONES USING A DEEP EUTECTIC SOLVENT
Part I: VIRTUAL LABORATORY versus TRADITIONAL LABORATORY: WHICH IS MORE EFFECTIVE FOR TEACHING ELECTROCHEMISTRY? Part II: THE GREEN SYNTHESIS OF AURONES USING A DEEP EUTECTIC SOLVENT
No Thumbnail Available
Date
2013-06-12
Authors
Hawkins, Ian Christopher
Journal Title
Journal ISSN
Volume Title
Publisher
Middle Tennessee State University
Abstract
The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals.
One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic liquids. Aurones are a unique biological product in many plants and preliminary research has shown that these chemicals could be viable drug candidates. The use of the deep eutectic solvent provides a green and inexpensive way to make large numbers of different aurones quickly. In this dissertation, we show the synthesis of 12 different aurones using this method.
One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic liquids. Aurones are a unique biological product in many plants and preliminary research has shown that these chemicals could be viable drug candidates. The use of the deep eutectic solvent provides a green and inexpensive way to make large numbers of different aurones quickly. In this dissertation, we show the synthesis of 12 different aurones using this method.
Description
Keywords
Aurones,
Deep eutectic solvent,
Hands-on,
Science laboratory,
Virtual laboratories