Part I. Synthesis and characterization of C{esc}b2{esc}s substituted imidazolium room temperature ionic liquids : Part II. Survey and analysis of organic chemistry text books /

No Thumbnail Available
Ennis, Elliot
Journal Title
Journal ISSN
Volume Title
Middle Tennessee State University
Part I. Among room temperature ionic liquids (RTILs), those derived from the imidazolium cation are the most common. RTILs have generally been viewed solely as solvents, but they are able to participate in certain types of reactions, particularly due to the relatively high acidity at the imidazolium C2. Deprotonation affords N-heterocyclic carbenes (NHCs), which can cause unwanted side reactions. Consequently, the major limitation of imidazolium RTILs is that they cannot be used as solvents in highly basic reactions such as the Baylis-Hillman and Grignard reactions. This work reveals a convenient route for the preparation of C2-substituted imidazolium ionic liquids. This method involves the alkylation of N-heterocyclic carbenes, which are readily generated from the C2-unsubstituted imidazolium ionic liquids. It works well for nonfunctionalized alkyl chlorides and less well for alkyl bromides and iodides, likely due to competing elimination reactions. The resulting C2-substituted salts can be transformed into ionic liquids via standard anion metathesis reactions.
Part II. Recent advances in media and the increasingly encyclopedic nature of traditional textbooks have made their role in college classes uncertain. In an effort to discover what is really being taught in organic chemistry courses across the US, a survey of organic chemistry professors in all 50 states was conducted to determine what material is covered in their organic chemistry courses for science majors. Survey Monkey, an online survey program, was used to construct a short 10-item survey which was sent to organic chemistry professors at various types of institutions across the nation. We sent out 2417 surveys and received 489 responses. The results of this survey revealed what topics the professors believe is core material and what they feel is extraneous. Additionally, this research identifies the things these professors would like to see changed in the organic chemistry texts.
From the open-ended portion of the survey data, an analysis of organic chemistry textbooks was created. Books were analyzed for number and types of problems, number of example problems, and number of problems containing answers in the back of the book. The analysis of the thirteen books revealed there was a statistically significant difference between the books in number and types of problems. This work will reveal the findings of the analysis.
Adviser: Scott Handy.