A plastome primer set for comprehensive quantitative real time RT-PCR analysis of Zea mays: a starter primer set for other Poaceae species

No Thumbnail Available
Date
2008-06-02
Authors
Sharpe, Richard M
Dunn, Sade N
Cahoon, A Bruce
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Background: Quantitative Real Time RT-PCR (q2(RT)PCR) is a maturing technique which gives researchers the ability to quantify and compare very small amounts of nucleic acids. Primer design and optimization is an essential yet time consuming aspect of using q2(RT)PCR. In this paper we describe the design and empirical optimization of primers to amplify and quantify plastid RNAs from Zea mays that are robust enough to use with other closely related species.
Results Primers were designed and successfully optimized for 57 of the 104 reported genes in the maize plastome plus two nuclear genes. All 59 primer pairs produced single amplicons after end-point reverse transcriptase polymerase chain reactions (RT-PCR) as visualized on agarose gels and subsequently verified by q2(RT)PCR. Primer pairs were divided into several categories based on the optimization requirements or the uniqueness of the target gene. An in silico test suggested the majority of the primer sets should work with other members of the Poaceae family. An in vitro test of the primer set on two unsequenced species (Panicum virgatum and Miscanthus sinensis) supported this assumption by successfully producing single amplicons for each primer pair.
Conclusion Due to the highly conserved chloroplast genome in plant families it is possible to utilize primer pairs designed against one genomic sequence to detect the presence and abundance of plastid genes or transcripts from genomes that have yet to be sequenced. Analysis of steady state transcription of vital system genes is a necessary requirement to comprehensively elucidate gene expression in any organism. The primer pairs reported in this paper were designed for q2(RT)PCR of maize chloroplast genes but should be useful for other members of the Poaceae family. Both in silico and in vitro data are presented to support this assumption.
Description
Keywords
Citation
Plant Methods. 2008 Jun 2;4:14
Collections