Rapid Assessment of Nitrogen Concentration of Two Bioenergy Feedstock Grasses Using Hyperspectral Reflectance Spectroscopy
Rapid Assessment of Nitrogen Concentration of Two Bioenergy Feedstock Grasses Using Hyperspectral Reflectance Spectroscopy
No Thumbnail Available
Date
2016-12
Authors
Pirtle, Todd
Journal Title
Journal ISSN
Volume Title
Publisher
University Honors College, Middle Tennessee State University
Abstract
Rapidly and accurately monitoring crop nitrate concentration is critical for
both plant nutrient management and animal health, but can be difficult. Traditional
methods are laborious and require destructive plant samplings followed by chemical
analyses, thus, alternative methods are warranted. The objective of this research was
to design a rapid nitrate assessment method using two native warm-season grass
(NWSG) species, including ‘Alamo’ switchgrass (Panicum virgatum L.) and ‘Cheyenne’
indiangrass [Sorghastrum nutans (L.) Nash]. Both grass species were planted in a
greenhouse and fertilized with urea at control (0 kg N ha-1), low (65 kg N ha-1),
medium (130 kg N ha-1), and high (260 kg N ha-1) rates. Plant height and leaf
chlorophyll data were recorded weekly. Hyperspectral spectroscopy analysis and
machine learning-based simulation approaches were used for building prediction
models. The models accurately estimated botanical nitrate concentration even at its
low level using data acquired from both years (R2 = 0.88 and RMSE = 0.358).
Description
Keywords
remote sensing,
nitrogen,
bioenergy,
grassland,
forages,
precision ag,
agronomy,
plant and soil,
nutrient use