Resonance Graph of Perfect Matchings
Resonance Graph of Perfect Matchings
No Thumbnail Available
Date
2019
Authors
Aluoch, James
Journal Title
Journal ISSN
Volume Title
Publisher
Middle Tennessee State University
Abstract
Let G be a graph with perfect matchings and let C be a set of linearly independent even cycles of G of width at most 2. The resonance graph R(G, C) is a graph with the vertex set M a subset of M(G) such that two vertices Mi and Mj are adjacent if and only if the direct sum of Mi and Mj is E(c) for some cycle c in C.
In this paper, we extend the results obtained by Tratnik and Ye to general graphs. Particulary, we show that the resonance graph of every graph with perfect matchings with respect to a set of linearly independent even cycles of width at most 2 is bipartite and each connected component of the resonance graph is an induced cubical graph.
Description
Keywords
Mathematics