The effects of clickers and online homework on students' achievement in general chemistry /
The effects of clickers and online homework on students' achievement in general chemistry /
No Thumbnail Available
Files
Date
2012
Authors
Gebru, Misganaw
Journal Title
Journal ISSN
Volume Title
Publisher
Middle Tennessee State University
Abstract
Retention of an introductory general chemistry course material is vital for student success in future chemistry and chemistry-related courses. This study investigated the effects of clickers versus online homework on students' long-term content retention, examined the effectiveness of online homework versus no graded homework on students' achievement in a first-semester general chemistry course, and assessed students' attitudes toward the use of online homework. Students' data from the yearlong American Chemical Society General Chemistry (ACS GC97) exam, teacher-prepared final exams, and online surveys were analyzed to measure the effects of clickers and online homework on students' long-term content retention and performance, and to capture students' attitudes. A variety of methods including Welch ANOVA, independent samples t -test (Welch), Pearson's correlation, test of proportions, and Pearson's Chi-square test were used to analyze the data. The analyses indicated that the use of clickers or online homework did not significantly improve students' long-term content retention of general chemistry course material, that the use of online homework was more beneficial than, or at least as effective as no graded homework in improving students' performance, and students valued the fact that online homework provided immediate feedback. Additionally, results of this study revealed that greater numbers of students were retained in clicker and online homework classes than non-clicker, non-online homework classes and that various types of online homework systems used in general chemistry could impact student performance differently. Implications of the findings and future research directions were presented.
Description
Adviser: Amy J. Phelps.